Random Forest (Bosque Aleatorio): combinando árboles

random-forest-bosque-aleatorio

Un Random Forest (Bosque Aleatorio), es una técnica de aprendizaje automático muy popular. Los Random Forests tienen una capacidad de generalización muy alta para muchos problemas. Limitaciones de los Árboles de Decisión Los árboles de decisión tienen la tendencia de sobre-ajustar (overfit). Esto quiere decir que tienden a aprender muy bien los datos de entrenamiento pero …

Leer másRandom Forest (Bosque Aleatorio): combinando árboles

Ensembles: voting, bagging, boosting, stacking

Ejemplo en Ensemble por Votación

Un ensemble es un conjunto de modelos de machine learning. Cada modelo produce una predicción diferente. Las predicciones de los distintos modelos se combinan para obtener una única predicción. La ventaja que obtenemos al combinar modelos diferentes es que como cada modelo funciona de forma diferente, sus errores tienden a compensarse. Esto resulta en un …

Leer másEnsembles: voting, bagging, boosting, stacking

Árboles de Decisión con ejemplos en Python

Árbol de Decisión para el problema de clasificación Iris

Los árboles de decisión son una técnica de aprendizaje automático supervisado muy utilizada en muchos negocios. Como su nombre indica, esta técnica de machine learning toma una serie de decisiones en forma de árbol. Los nodos intermedios (las ramas) representan soluciones. Los nodos finales (las hojas) nos dan la predicción que vamos buscando. Los árboles …

Leer másÁrboles de Decisión con ejemplos en Python

¿Cómo usar Regresión Logística en Python?

Regresión Logística

La regresión logística es una técnica de aprendizaje supervisado para clasificación. Es muy usada en muchas industrias debido a su escalabilidad y explicabilidad. En este artículo vamos a ver cómo entrenar y usar un modelo de regresión logística. Si quieres repasar la teoría de esta técnica de machine learning, puedes consultar este artículo. Instrucciones rápidas …

Leer más¿Cómo usar Regresión Logística en Python?

Regresión Logística para Clasificación

Regresión Logística

La Regresión Logística es una técnica de aprendizaje automático para clasificación. Es una red neuronal en miniatura. De hecho, la regresión logística, se trata de una red neuronal con exactamente una neurona. Matemáticas de la Regresión Logística Podemos representar lo que hace la regresión logística en la siguiente figura: Los valores de x corresponden los …

Leer másRegresión Logística para Clasificación

Máquinas de Vectores de Soporte (SVM)

SVM regularizacion

En este artículo hablamos de las máquinas de de vectores de soporte. También son conocidas con el acrónimo SVM por sus siglas en inglés (Support Vector Machines). Se pueden usar tanto para regresión como para clasificación. Conceptualmente, los SVM son más fáciles de explicar para problemas de clasificación. En este artículo vamos a dar una …

Leer másMáquinas de Vectores de Soporte (SVM)

Redes Neuronales Generativas Adversarias (GANs)

StyleGAN

Las Redes Neuronales Generativas Adversarias son una forma nueva de usar deep learning para generar imágenes que parecen reales. También pueden generar otro tipo de datos tales como música. En este artículo vamos a ver qué son los modelos generativos, cómo funcionan y algunos ejemplos recientes. Las Redes Neuronales Generativas Adversarias también se denominan GANs …

Leer másRedes Neuronales Generativas Adversarias (GANs)

Regularización Lasso L1, Ridge L2 y ElasticNet

park 4261660 1280

En muchas técnicas de aprendizaje automático, el aprendizaje consiste en encontrar los coeficientes que minimizan una función de coste. La regularización consiste en añadir una penalización a la función de coste. Esta penalización produce modelos más simples que generalizan mejor. En este artículo vamos a hablar de las regularizaciones más usadas en machine learning: Lasso …

Leer másRegularización Lasso L1, Ridge L2 y ElasticNet

Gradiente Descendiente para aprendizaje automático

Gradiente Descendiente

El gradiente descendiente es la base de aprendizaje en muchas técnicas de machine learning. Por ejemplo, es fundamental en deep learning para entrenar redes neuronales. También es necesario para la regresión logística. Y en muchos casos, al hacer regresión lineal o polinómica es mejor usar el método del gradiente descendiente que el de los mínimos …

Leer másGradiente Descendiente para aprendizaje automático

Redes neuronales desde cero (I) – Introducción

redes neuronales

En este primer post de una serie de tres, hablaremos de una de las ramas más importantes del Machine Learning y la Inteligencia Artificial, las redes neuronales. Abordaremos este tema desde cero, empezando por la historia de las redes neuronales, sus conceptos básicos, nos adentraremos en las matemáticas que están involucradas en ellas e implementaremos …

Leer másRedes neuronales desde cero (I) – Introducción